Visit to the Laboratoire Hubert Curien (France)

This month we had the opportunity to visit the Laser-matter interaction (head: Razvan Stoïan) unit of the Laboratoire Hubert Curien in beautiful Saint Etienne, France.

PhD researcher Franzette Paz-Buclatin starts a 3 month research stay within the group of Razvan Stoian, and Dr. Airán Ródenas delivered a invited seminar on the LeapLab research around nanostructuring optical crystals.

This mission is financed thanks to the Spanish Government, Agencia Estatal de Investigación AEI/10.13039/501100011033, and the activities are planned within the framework of projects HELIUS (PID2019-107335RA-I00) and ‘Crystalline Nanophotonics’ (RYC-2017-21618).

This visit allows to continue a collaboration of more than 8 years now, between Dr. Razvan Stoian and Dr. A. Ródenas. It also meant a reunion between researcher Dat Nguyen and his PhD supervisor A. Ródenas (2016).

Seminar by Airan Rodenas, Professor, Leap Lab, Universidad de la Laguna, Espagne.

Monday, September 12, 2022 to Monday, September 12, 2022 at 11:00 AM

Nanolithography is at the heart of current microelectronics and photonics technologies and therefore of our lives. Developing materials and patterning them at the sub-micron level, ideally with precision on the 10nm scale or higher, is the fundamental process which sustains our current communication technologies, and probably holds a key on our chances of tackling the big challenges of our civilization: the climate emergency and the population growth (expected 10 billion by 2050). Our work focuses on a new class of nanolithography [1] which makes it possible to nanostructure crystals in three dimensions and with nanoscale precision. Our focus is on the potential of the technique for the development of future extreme-environment and real world functional devices, investigating the potential development of various new types of fundamental optical and photonic building blocks, such as diffractive elements, photonic crystal structures, and new laser cavity sources embedded inside solid-state laser crystals (garnets and sapphire), extremely important for the worldwide optics industry and also well known for their large resistance to extreme environments. In this seminar I will introduce the technique’s current characteristics and limitations, and I will present some recent findings on how controlling in both time and space the localized interaction of fs-pulses with the crystals, produces a palette of final material states with well differentiated properties, which we characterize by means of SEM morphology as well as by wet-chemical etching reactivity. The implication of these results in strictly applied terms resides in the knowledge of how to control 3D lithographic parameters, such as the nanopore’s cross-section and aspect ratios, the wet-chemical etching rates, and the achievable fabrication times; Lastly, I will comment on our current projects on the development of novel photonic elements and devices.

A. Ródenas

[1] Ródenas, A., Gu, M., Corrielli, G. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nature Photon 13, 105–109 (2019).

Left to right: Dat Nguyen (postdoc LHC), Airán Ródenas (ULL), Ciro D’Amico (LHC), Franzette Paz-Buclatin (PhD, ULL) and Razvan Stoian (Head of unit, LHC).
Invited seminar at Laboratoire Hubert Curien by Airán Ródenas

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s